

Year 2 Curriculum	Number and place value	Addition and subtraction	Multiplication and Division	Fractions
	- Count, read and write numbers from 1100 in numerals - Count forwards and backwards from any 2 digit number in ones and tens crossing the tens boundary - To know what each digit represents in two digit numbers (5 tens and 3 ones) - To partition 2 digit numbers into tens and ones $54=50+4$ (To use practical equipment to form these numbers) - To partition 2 digit numbers in different ways ($45=30+15$) - To explain and answer missing number calculations (64 = \qquad $+$ 4) $(53=40+$ \qquad - Count forwards and backwards in multiples of $2,3,5$ and 10 - Find one more/one less and ten more/ten less within and up to 100 - To add and subtract multiples of ten (What is 30 more than 44?) - To round 2 digit numbers to the nearest ten on a number line - To estimate and place 2 digit numbers on a number line - Order numbers up to 100 - To order and compare numbers using symbols < > stating which number is bigger or smaller	- Record and recall number facts up to 20 for + - - To know pairs of number that make 10 and $20(20-4)(17+3)$ - Use place value to add and subtract a one digit number to/from a 2 digit number using place value and known facts ($50+6=56,7-3$ helps me find the answer to 57-3) - Add and subtract a one digit number from or to a two digit number within 100 using a number line/track or hundred square (crossing tens boundaries) - To know what to add or subtract from a given number to reach the next multiple of ten - To rearrange addition calculations to start with the larger number $(8+46=$, start with 46$)$ - Derive and use related facts up to 100 (1 know $6+3=9$ so $16+3=19$) - To know pairs of multiples of 10 that total $100(40+60)$ - To add and subtract multiples of 10 using known facts $(8-4=4 \text { so... } 80-40=40)$ - To add and subtract multiples of ten using place value or by counting in tens $(34+40=$) - To add mentally, 3 one digit numbers - To find the difference between two numbers using a number line or practical equipment - To solve problems involving measures and money	- Count on from zero in $2 \mathrm{~s}, 3 \mathrm{~s}$ 5 s and 10 s - Fill in missing numbers in sequences for 2 s , 5 s and 10 s - Recognise odd and even numbers in counting patterns - To know that multiples of 5 can end in 0 or 5 and multiples of 10 end in 0 - To know that multiples of 2 are even numbers - Start to derive the 2,5 and 10 times table facts - Begin to use multiplication facts to derive the division facts - Use simple arrays when representing multiplication - Understand and present multiplication as repeated addition (6×5 'adding 5 six times') - Record doubles in number sentences and link them to the x2 table - Use objects and pictorial presentations to show answers for a multiplication problem - To use multiplication facts to answer worded problems - To solve division problems practically by grouping (18 marbles put into 3 groups) - To record division statements using the \div sign	- To recognise halves of shapes - To count forwards in halves and quarters to 10 using a number line - To know that 2 equal halves make one whole $1 / 2$ - To use halves in contexts such as cutting cakes or play dough for sharing - Use halves in a measures context such as half a bottle or half the length of a ruler/string - To know that 4 quarters make one whole $1 / 4$ - To know that 3 equal parts make one whole $1 / 3$ - To know that $1 / 2$ is equivalent $2 / 4$ - To recognise three quarters is presented as $3 / 4$ - To recognise what fraction of a shape or length is shaded - To find $1 / 2,1 / 3,1 / 4$ of amounts by sharing - To write simple fractions ($1 / 4$ of $8=2$) - To investigate what numbers to 30 cannot be halved, explaining why - To make $1 / 2$ and $1 / 4$ turns in PE - To solve problems involving fractions (Harry has 12 pencils. What is $1 / 4$ of this?)

Count, read and write numbers from 1-100 in
numerals

- Count forwards and backwards from any 2 digit number in ones and tens crossing the tens boundary
- To know what each digit represents in two digit numbers (5 tens and 3 ones)
- To partition 2 digit numbers into tens and ones $54=50+4$ (To use practical equipment to form these numbers)
- To partition 2 digit numbers in different ways $(45=30+15)$
- To explain and answer missing numbe calculations $(64=\ldots+4)(53=40+\ldots$
- Count forwards and backwards in multiples of 2, 3, 5 and 10
- Find $10,20,30,40$ more and less than 2 digit numbers
- To add and subtract multiples of ten (What is 30 more than 44?)
- To round 2 digit numbers to the nearest ten on a number line
- To estimate and place 2 digit numbers on a number line
- Order 2 digit numbers up to 100
- To order and compare numbers using symbol < > stating which number is bigger or smaller
- To fill in missing numbers in a sequence
- To begin to use place value beyond 100
- To identify properties of number (37 is odd, it has 7 ones and the next ten is 40)
- To identify the whole number that I half way between two numbers (What number is halfway between 40 and 50?)
- To solve puzzles (How many different ways can you make 13 p ?)
- Record and recall number facts up to 20 for +
- To know pairs of number that make 10 and 20 $(20-4)(17+3)$
- Use place value to add and subtract a one digit number to/from a 2 digit number using place value and known facts
($50+6=56,7-3$ helps me find the answer to 57-3)
- Add and subtract a one digit number from or to a two digit number within 100 using a number line/track or hundred square (crossing tens boundaries)
- To know what to add or subtract from a given number to reach the next multiple of ten
- To rearrange addition calculations to start with the larger number
$(8+46=$, start with 46$)$
- Derive and use related facts up to 100
(1 know $6+3=9$ so $16+3=19$)
- To know pairs of multiples of 10 that total 100 $(40+60)$
- To add and subtract multiples of 10 using known facts
($8-4=4$ so... $80-40=40$)
- To add and subtract multiples of ten using place value or by counting in tens ($34+40=$)
- To add or subtract a multiple of ten to or from a two digit number
- To add and subtract two digit numbers, crossing tens boundaries
- To mentally add and subtract two digi numbers without crossing a tens
- To add mentally, 3 one digit numbers
- To find the difference between two numbers using a number line or practical equipment
- boundary
- To solve missing number problems $(29+\ldots=59)$
- To apply the inverse to addition and subtraction calculations
- To solve problems involving measures and money
- To recognise halves of shapes
thirds and quarters to 10 using a number line
- Position halves on a number line
- To know that 2 equal halves make one whole $1 / 2$
- To use halves in contexts such as cutting cakes or play dough for sharing
- Use halves in a measure context such as half a bottle or half the length of a ruler/string
- To know that 4 quarters make one whole 1/4
- To know that 3 equal parts make one whole $1 / 3$
- To know that $1 / 2$ is equivalent 2/4
- To recognise three quarters is presented as $3 / 4$
- To recognise what fraction of a shape or length is shaded
- To find $1 / 2,1 / 3,1 / 4$ of amounts by sharing
- To write simple fractions ($1 / 4$ of $8=2$)
- To investigate what numbers to 30 cannot be halved, explaining why
- To make $1 / 2$ and $1 / 4$ turns in PE
- To solve problems involving fractions (Harry has 12 pencils. What is $1 / 4$ of this?)

