Year 3 Curriculum	Number and place value	Addition and subtraction	Multiplication and Division	Fractions
	- Count on and back in ones, tens and hundreds from any number - To know what each number represents in a three digit number - To read, write and partition three digit numbers - To order numbers to 1000 - To find 10 and 100 more or less than any three digit number - Count on and back in multiples of 2, 3, $4,5,10$ and 100 - To know the multiple of 10 that comes before or after any two or three digit number - To round two and three digit numbers to the nearest 10 - To order and compare numbers using symbols < > stating which number is bigger or smaller	- Recall fluently number facts up to 20 for + - - Use and apply facts to add several digits - To add and subtract one digit numbers to/from three digit numbers - To know addition and subtraction facts involving multiples of 10 and 100 (190-70) - To add and subtract two digit numbers crossing the hundreds boundary, mentally - To add and subtract multiples of 10 and 100 to and from any given three digit number - To know what must be added to any two and three digit number to make the next multiple of $10(127+$ \qquad $=$ 130) $(8-4=4 \text { so... } 80-40=40)$ - To find a small difference between two numbers up to 1000 (267-254) - To use a range of calculation strategies to solve problems in the context of money and measures	- Count on from zero in $2 s, 3 s, 4 s 5 s, 8 s$ and 10s - To know multiplication facts for the 2 , 5, 10 times tables and the related division facts - Begin to recognise multiples of 3,4 and 8 - Fill in missing numbers in sequences for $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s - To solve missing number problems for multiplication and division - Use simple arrays when representing multiplication - Understand and present multiplication as repeated addition (6×5 'adding 5 six times') - Record doubles in number sentences and link them to the $x 2$ table - To know doubles and corresponding halves to 50 - Use objects and pictorial presentations to show answers for a multiplication problem - To use multiplication facts to answer worded problems - To solve division problems practically by grouping and sharing (18 marbles put into 3 groups) - To multiply a 'teens' number by a single digit number (14×3)	- To count in halves, quarters and thirds - To understand the terms numerator and denominator - To know that one whole is equal to 2 halves, 3 thirds, 5 fifths etc. - To understand the term tenths and that this arises from dividing an object into ten equal parts - To know the difference between unit and non-unit fractions - To compare and order unit fractions - To find unit fractions of amounts ($1 / 3$ of $12=$) - To solve worded problems and reason about fractions

- Count on and back in ones, tens and hundreds from any number
- To know what each number represents in a three digit number
- To read, write and partition three digit numbers
- To partition two and three digit numbers in different ways ($853=700+153$)
- To order numbers to 1000
- To find 10 and 100 more or less than three digit numbers
- Count on and back in multiples of $2,3,4,5$, $8,10,50$ and 100
- To use knowledge of the above multiples to create, describe and solve sequences
- To know the multiple of 10 that comes before or after any two or three digit number
- To round two and three digit numbers to the nearest 10
- To order and compare numbers using symbols < > stating which number is bigger or smaller
- To use the vocabulary of estimation and approximation
- To solve number problems with reference to money and measures
- Recall fluently number facts up to 20 for +
- Begin to derive pairs to $100(34+66)$
- Use and apply facts to add several digits
- To add and subtract one digit numbers to/from three digit numbers
- To know addition and subtraction facts involving multiples of 10 and 100 (190-70)
- To add and subtract two three digit numbers using place value equipment and a range of written methods where exchangin is required (column addition/subtraction)
- To add and subtract two digit numbers crossing the hundreds boundary, mentally
- To add and subtract multiples of 10 and 100 to and from any given three digit number
- To know what must be added to any two and three digit number to make the next multiple of $10(127+\ldots=130)$ ($8-4=4$ so... $80-\overline{40}=40$)
- To find a small difference between two numbers up to 1000 (267-254)
- To use a range of calculation strategies to solve problems in the context of money and measures
- To solve problems mentally when adding and subtracting two and three digit numbers
- Count on from zero in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s} 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10s
- To know multiplication facts for the 2, $4,5,10$ times tables and the related division facts
- To know the 3 and 8 times tables
- To connect the 4 and 8 times table by doubling
- Fill in missing numbers in sequences for $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
- To solve missing number problems for multiplication and division
- Use simple arrays when representing multiplication
- Understand and present multiplication as repeated addition
(6×5 'adding 5 six times')
- To know and use the inverse to link multiplication and division
- To know doubles and corresponding halves to 50
- Use objects and pictorial presentations to show answers for a multiplication problem
- To use multiplication facts to answer worded problems
- To solve division problems practically by grouping and sharing (18 marbles put into 3 groups) To solve division calculations with exact answers and those with remainders
- To multiply a 'teens' number by a single digit number
(14×3)
- To multiply a 2 digit number by a single digit number (24×5)
- To multiply one digit numbers by multiples of 10 (3×5)
- To count in halves, quarters, thirds, fifths and tenths (one fifth, two fifths, three fifths
- To understand the terms numerator and denominator
- To understand that the larger the denominator the smaller the unit fraction as it is divided into more equal parts
- To understand and recognise equivalent fractions
- To know that one whole is equal to 2 halves, 3 thirds, 5 fifths etc.
- To understand the term tenths and that this arises from dividing an object into ten equal parts
- To identify pairs of fractions that make a whole $(2 / 5+3 / 5)$
- To know the difference between unit and non-unit fractions
- To find unit and non-unit fractions of amounts and quantities ($1 / 5$ of $£ 45$)
- To compare and order unit fractions
- To solve worded problems and reason about fractions

- Recall fluently number facts up to 20 for +
- To know number pairs to $100(34+66)$
- Use and apply facts to add several digits
- To add and subtract one digit numbers to/from three digit numbers
- To know addition and subtraction facts involving multiples of 10 and 100 (190 - 70)
- To add and subtract two three digit numbers using place value equipment and a range of written methods where exchangin is required (column addition/subtraction)
- To mentally, add and subtract a three digit number and ones/tens/hundreds
- To add and subtract multiples of 10 and 100 to and from any given three digit number
- To know what must be added to any two and three digit number to make the next multiple of $10\left(127+{ }_{-}=130\right.$ ($8-4=4$ so... $80-\overline{40}=40$)
- To find a small difference between two numbers up to 1000 (267-254)
- To use a range of calculation strategies to solve problems in the context of money and measures
- To solve problems mentally when adding and subtracting two and three digit numbers
- Estimate an answer to a calculation and use inverse operations to check the answer
- To know multiplication facts for the 2,3 $4,5,8,10$ times tables and the related division facts
- To connect the 4 and 8 times table by doubling
- Fill in missing numbers in sequences for $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
- To solve missing number problems for multiplication and division
- Use simple arrays when representing multiplication
- Understand and present multiplication as repeated addition
(6×5 'adding 5 six times')
- To know and use the inverse to link multiplication and division
- To know doubles and corresponding halves to 100
- Use objects and pictorial presentations to show answers for a multiplication problem
- To use multiplication facts to answer worded problems
- To solve division problems practically by grouping and sharing
(18 marbles put into 3 groups)
To solve division calculations with exact answers and those with remainders
- To divide a two digit number by a single digit number using a written method
- To multiply a 'teens' number by a single digit number
(14×3)
- To multiply a 2 digit number by a single digit number (24×5)
- To multiply one digit numbers by multiples of 10 (3×50)
- To count in halves, quarters, thirds, fifths and tenths (one fifth, two fifths, three fifths)
- Be able to place fractions on a number line
- To understand the terms numerator and denominator
- To understand that the larger the denominator the smaller the unit fraction as it is divided into more equal parts
- To understand and recognise equivalent fractions
- To know that one whole is equal to 2 halves, 3 thirds, 5 fifths etc.
- To understand the term tenths and that this arises from dividing an object into ten equal parts
- To identify pairs of fractions that make a whole $(2 / 5+3 / 5)$
- Add and subtract fractions with the same denominator
- To know the difference between unit and non-unit fractions
- To find unit and non-unit fractions of amounts and quantities ($1 / 5$ of $£ 45$)
- To compare and order unit fractions
- To solve worded problems and reason about fractions

